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Models, degenerate with respect to a small parameter, which describe the propagation of disturbances with a finite velocity, are 
considered. Example, when parabolic models degenerate into hyperbolic ones and, inversely, when hyperbolic models can be 
obtained by a generalization of parabolic models, are given. The reduction of the three-dimensional problem of elasto-dynamics 
for a layer to a two-dimensional one on the basis of power series, and also the construction of weakly dispersive, but strongly 
non-linear models of the propagation of surface waves on water, close to hyperbolic models, are considered in more detail. 
© 2004 Elsevier Ltd. All rights reserved. 

The problem of the finiteness of the velocity of propagation of disturbances as a condition for the 
correctness of the formulation of the initial boundary-value problem for hyperbolic equations and its 
solvability were considered by Hersh in [1]. He presented some cases of the non-existence of solutions 
for initial boundary value problems with finite velocities. He also examined correctly formulated initial 
boundary-value problems for hyperbolic equations in a semi-infinite domain and defined the conditions 
for a finite velocity. These problems have also been considered by other researchers ([2-9], etc.). 

The analysis of dynamic models from the viewpoint of the finiteness of the velocity of propagation 
of disturbances involving a small parameter [3, when the original models degenerate into simplified 
models (quasi-degenerate or degenerate with respect to parameter 13) for [3 --+ 0, is of interest in wave 
theory. The necessary condition of the finiteness of velocity of propagation of disturbances is the 
hyperbolity of the model, i.e. it has to be described by a hyperbolic system of differential equations. It 
should be noted that the type of equation may change for asymptotic degeneration. Therefore, only 
limit hyperbolic models obtained in this case are of interest, for instance, when the parabolic model 
transforms into the hyperbolic one or the hyperbolic model of elasto-dynamics for a layer transforms 
into the hyperbolic model, and not into the classic parabolic model, which predicts an infinite velocity 
of propagation of disturbances. 

These models transform into hyperbolic models of a lower order for a singular degeneration in the 
case of dissipative models described by parabolic equations, which predict an infinite velocity of 
propagation of disturbances. 

On the other hand, dissipative and diffusion parabolic models can be generalized to hyperbolic ones 
by an expansion (complement) of the parabolic operator up to the hyperbolic one on the basis of the 
generalized transport equation (an idea originated by Maxwell [9]). The solutions of the parabolic 
equations will then be the limit solutions of these generalized equations [10, 11]. 

The three-dimensional problem can be reduced to a two-dimensional one in the case of the degenera- 
tion of the original hyperbolic model of elasto-dynamics for a layer with a small relative thickness using 
the power series method without invoking additional hypotheses, introduced by employing traditional 
phenomenological approaches. This results in a set of simplified (degenerate) models of various types, 
from which only hyperbolic models are selected by the proposed algorithm. Consequently, the hyperbolic 
model of flexural vibrations of Timoshenko-Mindlin plates (the two-mode approximation) and a more 
accurate model (the three-mode approximation) can be obtained analytically. These models describe 
the propagation of disturbances with a finite velocity, unlike the classical models. An accurate formula 
for determining the shear coefficient, introduced artificially in all traditional approaches when 
constructing refined equations for the vibration of rods, plates and shells, in the Timoshenko-Mindlin 
model can also be obtained on this basis, and the choice of this coefficient has been subject of many 
studies and discussions. 
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In the case of a fluid of finite varying depth, it is possible to construct quasi-degenerate models for 
small dispersion 13 and large non-linearity ~x, which leads to models close to hyperbolic ([3 = 0), using 
an analytical approach. Unlike traditional approaches, the limitation on the non-linearity parameter 
~x is removed here, and the system of evolutional equations thereby obtain describes the propagation 
of highly non-linear waves. Consequently, a consideration of such non-linear effects and the variability 
of depth results in a perturbation of the propagating solitary wave and the formation of"tails" as opposed 
to a purely soliton wave for c~ - 13 or tipping waves for 13 = 0. 

The singular degeneration of parabolic models to hyperbolic models with respect to a parameter. A typical 
example is the Navier-Stokes equation for a compressible when the viscosity approaches zero. Other 
examples include the Burgers equation u t + UUx = yUxx for y -~ 0 and the Korteweg-de Vries equation 
ut + t~uux + ~Ux~ = 0 for 13 --) 0 as well as the degeneration of hyperbolic-parabolic models of magnets 
hydrodynamics and magneto-elasticity into hyperbolic ones as the magnetic Reynolds number 
approaches infinity [12]. These and many other evolutionary equations describe wave propagation due 
to the fact they include a hyperbolic operator of lower order as a kernel [13]. The non-dissipative 
Korteweg-de-Vries equation also degenerates into a hyperbolic equation but in addition it predicts the 
propagation of solitons with a finite velocity for a balance of non-linear and dispersion effects. 

Hyperbolic models as a generalization of parabolic models. Examples of the generalization (expansion) 
of parabolic equations, describing the propagation of disturbances with an infinite velocity, into 
hyperbolic equations were given in [5-14]. We will also note the model of heat conduction, the diffusion 
model, the Smoluchowski equation, the model of the evolution of floor sediments [13, 14], the model 
of the elasticity of a relativistic body and the model of turbulence. One of the most characteristic models 
is the hyperbolic model [14], which generalizes the Navier-Stokes equation by expansion of the parabolic 
operator to a hyperbolic one. The hyperbolic generalization was presented in the form of a transport 
equation, predicting the existence of a front propagating with a finite velocity in a solution of the travelling 
waves type. This is not predicted by the well-known reaction-diffusion type equations. 

The construction of improved wave models of the theory of plates. Usually the equations of longitudinal 
and bending vibrations of plates, including also the well-known improved equations, are derived by 
invoking physical and geometrical hypotheses. These equations are essentially approximate constructions 
(approximations) of the problem of elasto-dynamics for an elastic layer in an exact formulation. Here 
the approximate equations are derived from this exact formulation, without invoking my hypotheses 
of a physical nature and on the basis of the analytical algorithm of the reduction of the three-dimensional 
problem to a two-dimensional one on the assumption that the thickness of the layer is small compared 
with the horizontal scale. Such an algorithm can be implemented either by the power-series method 
or asymptotic expansion methods. This obviously results in infinite systems, the reduction of which results 
in a set of approximate models, which can be seen as degenerate (quasi-degenerate) with respect to 
the small transverse coordinate or a small parameter. Thus, all known phenomenological models and 
new more accurate (generalized) models, which cannot be practically constructed on the basis of 
hypotheses of a physical and geometrical nature, can be obtained analytically. Our aim is to select from 
the set of approximations only those approximations which result in hyperbolic models describing the 
propagation of disturbances with a finite velocity. 

We will consider the problem of elasto-dynamics for an infinite layer of thickness 2h, bounded by 
end surfaces x3 = -+h in the region 

[ ~ ,~ ] ]  2h 
= (xl, x2, x3) • R3: Xl, x2 • (-~, ~), x3 ~ L-2 2JJ; ~ = - -T  (1) 

in a rectangular Cartesian system of coordinates (xa, x2, x3) where l is the horizontal scale of the layer. 
The initial boundary-value problem for the displacement vector u = (Ul, u2, u3 = w) is formulated as 
follows: it is required to find the vector-function u = u (xl, x2, x3, t) as a solution of the hyperbolic 
equations in the domain ~ x [0, T], T > 0 

V2Uk + (1 + ~,IG)Ok(V. u) = attlgk, k = 1, 2, 3 (2) 

which satisfy the boundary conditions for the components of the stress tensor on the end surfaces of 
the layer 

+ 
X 3 = _.+g/2: (Y33 = q - ( X l ,  X2, t ) ,  C3i = p~(Xl, X2, t),  i = 1, 2 (3) 
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and the initial conditions 

t = O: u k = O, 3tu k = O, k = 1,2,3 (4) 

Dimensionless quantities are introduced everywhere. The characteristic length l, the shear modulus 
G and the velocity of propagation of shear waves Cs are adopted as scales. It is assumed that ~ and G 
are constant quantities. 

Henceforth we will assume that the thickness of the layer is small ~ ~ 1, and thus it is natural to use 
an expansion in the dimensionless coordinate x3 relative to the median surface x3 = 0, thereby reducing 
the dimension of the problem [15-17]. This results in degeneration of the original hyperbolic model, 
where three cases of degeneration are possible, resulting in equations of the parabolic, hyperbolic and 
mixed type. Only the degeneration of the hyperbolic model into a hyperbolic model is correct and has 
a physical meaning for the condition that the velocity of propagation of the perturbations is finite. 

The required functions are represented in the form of a power series 

m 

Uk(Xl ,  X2, X3, t) = E Ukm(Xl' x2' t)X3' k = 1, 2, 3 
m = O  

As a result the original problem (1)-(4) reduces to determining an infinite number of functions Ukm , 
which satisfy an infinite system of differential equations and recurrence relations. In turn, this infinite 
system decomposes into two independent subsystems, corresponding to symmetric (planar) and 
asymmetric (bending) deformations about the median surface x3 = 0. Here we will only consider the 
case of asymmetric deformations, for which we obtain, after lengths reduction, (the summation is carried 
out from s = 0 to s = ~ )  

- 2 s + l  
e(x l ,  x2, x3, t) = E e 2 s + l ( X l ,  X2, t)x3 , e = Ui, i, i = 1,2 

W(Xl, x2, x3, t) = E~zs(Xl,  x 2, t)x~ s 

, -72- , , - ,-2sB2s () 1( + /) 1. + 
w2,J  = pI + p l ) +  ax--S2  p2 + 

zE -1 - e 2 s + l -  L~w2~ 2 (2~+1)~2,+1 1 + = ~(q -q - )  (5) 

1 + ~,IG 1 
14 '2 s  + 2 = - (2s + 2)(2 + ~,/G) ~2s+ l - (2s + 1)(2s + 2)(2 + ~,/G) 'Ls~'2s 

- 1 I_Le + 1 + ~,/G,-,2]- 
e2s+3 = ( 2 s + 2 ) ( 2 s + 3 i  ~ v  Je2s+l+ 

1 + g i G  V 2 + Lsw2 ~ 
+ (2s + 1)(2s + 2)(2s + 3)(2 + giG)  

after where 

2 2 0 2 _ 3._2. z 
L s = csV  2' Le = cZ~V2 

Ot Ot 2 

e is the divergence of the planar displacements, w is the deflection, p/-* and q-+ are the shear and normal 
loads along the end surfaces of the layers and cs and ce are the velocities of propagation of shear and 
dilatation waves. 

Equation (5) gives the exact solution of the problem. Reduction of this system enables us to obtain 
a set of approximations of various kinds. The hyperbolic degeneration of the initial boundary-value 
problem for the final hyperbolic system of equations of arbitrary order in R n on the basis of the power 
series method was considered in [17]. Thus, necessary and sufficient conditions of the following 
degeneration: the completeness of the reduced system and the conservation of all space-time differential 
operations up to a certain order, were established. 
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The truncation of Eq. (5) to the seventh order inclusive results in a three-mode (thickness wave modes) 
approximation, which can be reduced to the following equation 

~t2 )g at +g a'~t4JrM -~SblV2V2V2+ 

+~:5 b,~ 2~2t20 V2V2 _ ~ 5b3()t4~--g2 + ~Sb4()t6~6 TMsW = 1 - ~2dlV2 + ~ a2~t2JrM + (6) 

+ "4 d 72V 2 ,-4 d O 2172 + e4 d 0 4 ] ( + -, 
q 3 --q 4~"2 q 52"~? q - q  ) 

~t ~t JTMS 

Timoshenko [18] generalized the parabolic Bernoulli-Euler model of the flexural vibrations of a beam 
to a hyperbolic model on a phenomenological basis by introducing corrections responsible for the 
thickness-shear deformations and the inertia of rotation. On this basis Mindlin [19] generalized the 
parabolic Kirchhoff model of the flexural vibration of plates [20] (the operator K in Eq. (6)) to a 
hyperbolic model (the two-mode model - TM operators). A more general hyperbolic model [21] was 
constructed as a mathematical approximation without introducing any phenomenological assumptions 
(the three-mode approximation - TMS operators) including also the two-dimensional system as a special 
case. It should be noted that the coefficients ap, bq and dr in Eq. (6) depend only on Poisson's ratio v. 
This enables the exact magnitude of the shear coefficient in the relation k z = 2/(2 - v + "~ 1/2 + v 2 ) 
to be determined from Eq. (6). 

A development of the theory of constructing refined models of the dynamics of rods, plates and shells 
has been given and their multiple applications have been described in [22]. 

The model of non-linear wave propagation in water, degenerate with respect to the dispersion parameter. 
The same approach as in the case of the vibration of plates is used here to solve the problem. The 
problem of the propagation of surface gravitational waves, which in the majority of cases is well described 
by the model of an ideal incompressible fluid for its potential motion, is considered. As a result the 
determination of the vector field reduces to the scalar problem for the velocity potential q~ and the 
deviation of the free surface 11. The problem is considered in the complete non-linear form for a fluid 
of varying depth with an undisturbed free surface z = 0 in a rectangular Cartesian system of coordinates 
x, y, z. 

Below, the plane problem is considered, i.e. the solutions are independent of the coordinate y. The 
problem is characterised by the three determining dimensionless parameters 

O~ = a / H  o, ~ = (Ho/ l )  2, T = tgO = Ho/l ,  Ur = t~/[~ 

where 0 is the angle of deflection of the floor, Ur is the Ursell number (a derived parameter), H0 is the 
depth (the vertical scale), l is the characteristic horizontal scale and a the maximum deflection of the 
free surface (the amplitude). The problem is considered in domain 

= { (x ,y ,z )~  R3[.~<x<o% _ ~ < y < ~ ,  -H(x)<z<arl(x, t)} (7) 

where x = ~ is the line in front of the zone of wave erosion. 
In dimensionless variables 

X• X Z•• z t • • • t • • t •  ••• Co •••• 
= 7'  H--o' 7 5  ¢ '  - s 

the problem is formulated in terms of two unknown functions q) and rl in the following form (the asterix 
is omitted below) 

~ltP,x + (Pzz = 0 in domain f~ (8) 

z = -H(x):  % + 13H~q)~ = 0 (9) 
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z = ¢xq' r b + C~qx~x - [5-1¢pz = 0, rl + ~p, + (a/2)q)zx + (¢x/(2[$))tp~ = 0 (10) 

t = O:tp(x,z,t) = f l ( x , z ) ,  tpt(x,z, t)  = f2 (x , z )  (11) 

It should be noted that not one (sufficient) parameter but three scaling parameters H0, l, a have been 
introduced, which is necessary for the asymptotic analysis. 

The solution of problem (8)-(11) for the case of propagating waves in a complete non-linear formu- 
lation is unknown. This problem describes a non-linear-dispersion system, for which the propagation 
of solitary waves is typical. Here an approximate analysis is given using an asymptotic method [23, 24], 
which enables the problem to be reduced to an analysis of a system of two evolutionary equations. It 
is assumed that the dispersion parameter [~ and the gradient of the floor surface y are small and that 
at the same time the non-linear parameter a is considered to be arbitrary, unlike the traditional 
approaches in which it is assumed that a - [~. 

The two-dimensional problem with respect to the coordinates x, z is reduced to a one-dimensional 
problem with respect to x using the power series method, which reduces the problem to an infinite system, 
including the terms [3 q and c~ n (q, n are finite integer values) and their products. The introduction of 
assumptions about the smallness of the parameters [3 and ~, enables the infinite systems to be reduced 
which retaining terms of the order of 13, 132, . . . ,  which corresponds to the long-wave approximations. 
Further, we are retaining in the infinite system terms of the first order only with respect to ~ and all 
terms with the non-linear parameter c~ ~. This corresponds to the strongly non-linear weakly dispersion 
model, degenerate with respect to the dispersion parameter ~ [25]. The opposite limiting case 13 >> ¢x 
results in parabolic models when dispersion effects are taken into account completely, while non-linear 
effects are small and are not considered here. 

We will represent the function ¢p in the form of the expansion 

¢p(x, z, t) = ~ (z + H)n~nf~n)(x, t) (12) 
n=0 

It can be seen that expansions in the parameter ~ and z + H are equivalent. 
We substitute Eq. (12) into Eqs (8)-(11). The substitution into Eq. (8) results in the recurrent relation 

lf(k) 2(k + l)Hxf(xk+l) +(k  + l)H~xf(k+l) 

The condition on the bottom (9) enables us to expressf (1) in terms o f f  (°) = f 

f(l)  = _ HxfO _ ~H3xfO + 0(~2) 

The final expression for ¢p has the form 

3 
+ ~ - Hxfx(Z + H) + (z + H)2(HxHxxfx + Hxfxx) = 

( z + H ) 3 ( 1 .  ~ ( + n ) 4 f  " ")l 
- "2" \3  rtxxxJx +"" + 24 -~xx~jj + O(133) 

(13) 

We obtain the equation 

tit + hxtO + hto x - ~ h x ~HxxtOx + ~HxtOx~ + ~HxxxtO + ~'qxtOxx + 

(14) 

+ h(ar lxHx/o  + 3HxO3x2 + 2aTLHxO~ x + 3HxHxxtO ) + ghl 3t.Oxx~ + arlxHxtO)]2 = 0(1~2) 

by substituting Eq. (13) into the first boundary condition (10), retaining the terms of the order of [3 and 
c~n[3 and taking into account that h = H + c~rl, co = f~. 
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The second condition of (10) reduces to the following equation 

£Ot + "fix + (X ~( tOx)x - ~J h Z[ (Oxt + Ot( tOtOxx - ~x2)] + Co,( h H  ~) x + ~x,hHx + 

+ oLCO~x(hxH x + H~ + 3hHxx) + (15) 

2 } 
+ oLhHxO~ x + ao~O)xxhH x + (o2[Hxx(hx + H x) + hHxx x] = 0(13 2) 

J[ 

after differentiating it with respect to x and substituting expression (13) into it. 
The evolution equations (14) and (15) form a closed system of coupled equations independent ofz. 
Below, we introduce the average velocity (averaged over the depth) 

1 1 1 2 
u =  ~ J ¢#zdz = (o-~[~2hHxxCO + hHx(Ox + H~(o + ~H (Oxx] + O(1~ 2) 

- H  

(16) 

The evolution equations (14) and (15) take the form 

tit + (hu)x = 0 (17) 

H H ) 
u t + auu:, + fix = ~ --~-Uxxt + Hnxux t  + .~nxxUt + 

2 H 2 H 2 H 
+ a~JI(rln)xUx t + HH~,uuxx + ~rlHux: t + -~-UUxx x - -~-UxUxx + -~nxxU t + 

H 2 
+ ~ H H x x u U x + ' ~ H x x x U +  "qxHxU,l+ L1 + O(~ 2) 

08) 

after some reduction using expression (16), where L 1 is an operator taking into account higher-order 
non-linearity, i.e. O(0~2[~, 0~31~, 0~4~). 

System of equations (17) and (18) reduces to the well-known equations [26] 

tit + (hu)x = 0 

H 3 
"~ nxxUt].: + 0(~ 2) + O~UUx + "qx = ~(-~-Uxxt\ + HHxUxt + H U t 

in the case when the non-linearity parameter a is small and is of the same order of magnitude as the 
dispersion parameter [3, a - I] ~ 1. 

When [~ = 0 system (17), (18) reduces to the system of quasi-linear equations for waves in shallow 
water 

ut + o~UUx + rlx = 0, rlt + (hu)x = 0 

from which follow the linearized equations 

u t =-1"1:,, I], = - (Hu) , ,  

when ~ = 0, and they reduce to the wave equation 

~xx(H~x)  - ~t 2 = O 

when u = ~p/bx. 
The evolution equations (17) and (18) are of interest for analysing wave propagation in the coastal 

zone, where the characteristic distances are relatively small, so that dispersion effects do not accumulate, 
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while at the same time non-linear effects are significant. The analysis of the initial boundary-value 
problem using of Eqs (17) and (18), which describe the transformation of solitary waves at the point 
where they hit the shore, demonstrates that large non-linear effects and the variability of the depth 
during the propagation of solitons is accompanied by a distortion of the wave profile and the occurrence 
of oscillating tails [25]. 

This research was partially supported financially by the Ukrainian State Foundation for Basic Research 
(01.07/00079). 
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